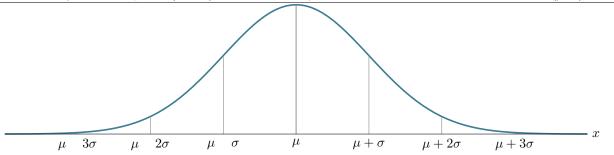


STATISTICS

DISTRIBUTIONS

NORMAL DISTRIBUTION

A Normal Distribution is described by a symmetric bell-shaped density curve (as below). It is centered at the mean μ and the spread (width) is determined by the standard deviation σ . Written as $N(\mu, \sigma)$.



THE 68-95-99.7 RULE

With a Normal Distribution with mean μ and standard deviation σ :

- Approximately **68%** of the data is within σ of μ . Between $(\mu \sigma, \mu + \sigma)$
- Approximately 95% of the data is within 2σ of μ . Between $(\mu 2\sigma, \mu + 2\sigma)$
- Approximately 99.7% of the data is within 3σ of μ . Between $(\mu \quad 3\sigma, \mu + 3\sigma)$

STANDARDIZING AND Z-SCORE

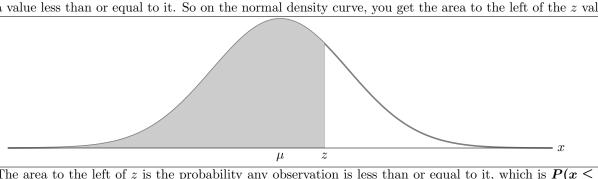
The standard Normal distribution N(0,1) has mean 0 and standard deviation 1. Given a Normal distribution $N(\mu, \sigma)$ we can standardize an observation x by calculating

$$z = \frac{x \quad \mu}{\sigma}$$

The standardized value is called the **z-score**. The z-score tells us how many standard deviations the x value is away from the mean μ .

STANDARD NORMAL TABLE

Once you calculate the z-score, you can use the standard Normal table to find the probability that you get a value less than or equal to it. So on the normal density curve, you get the area to the left of the z value.



The area to the left of z is the probability any observation is less than or equal to it, which is $P(x \le z)$. If you want the probability that an observation is greater than or equal to z, P(x = z), take 1 minus the table value which is 1 $P(x \le z)$.

California State University SAN MARCOS

STATISTICS

DISTRIBUTIONS

BINOMIAL DISTRIBUTION

A distribution X is a **binomial distribution** when we want to count the number of successes of n trials and the probability of success is p for **each** trial. You can only use the binomial distribution if each trial is independent, that knowing the result of one trial doesn't change the probability of the next trial.

BINOMIAL PROBABILITY

If x has a binomial distribution with n trials and probability p of success. The possible values of X are 0, 1, 2, ..., n. If k is one of those values, the probability we get exactly k successes is

$$P(X = k) = \binom{n}{k} p^k (1 \quad p)^{n-k} \quad \text{where} \quad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

The mean, μ , and the standard deviation, σ , of X is

$$\mu = np$$
 and $\sigma = \sqrt{np(1-p)}$

NORMAL APPROXIMATION TO BINOMIAL DISTRIBUTIONS

Given a binomial distribution X with n trials and probability p of success, if n is large, the distribution is approximately Normal with μ and σ as above. So we get $N\left(np, \sqrt{np(1-p)}\right)$ In general, you can use a Normal approximation when n is large that np = 10 and n(1-p) = 10.

SAMPLING DISTRIBUTION ON \bar{X}

The **population mean** is represented by μ whereas when we take a SRS, the **sample mean** is represented by \bar{x} is used to estimate μ . The **sampling distribution** of \bar{x} describes the possible values that \bar{x} can take from samples of the same size from the same population. The **mean** of \bar{x} is μ and the **standard deviation** is σ/\sqrt{n} .

SAMPLING DISTRIBUTION ON A NORMAL POPULATION

If the individual observations have a Normal distribution $N(\mu, \sigma)$ then the sample mean \bar{x} of an SRS of size n is also Normal with $N(\mu, \sigma/\sqrt{n})$. This is because the more samples we take (the bigger n is) the more likely \bar{x} is closer to μ , which makes the standard deviation smaller.

CENTRAL LIMIT THEOREM

Given any distribution with mean μ and standard deviation σ , when n is large, the sampling distribution of \bar{x} becomes approximately Normal with $N(\mu, \sigma/\sqrt{n})$.

SAMPLING DISTRIBUTION ON \widehat{P}

The actual **population proportion** is **p** whereas when we take a SRS, the **sample proportion** $\hat{\mathbf{p}}$ estimates p. The **mean** of \hat{p} is p and the **standard deviation** is $\sqrt{p(1 p)/n}$. Also, when n is large, np and n(1 p) are large and when the population is at least 20 times larger than the sample, the sampling distribution becomes approximately Normal with $N(p, \sqrt{p(1 p)/n})$

